365bet体育在线投注_mobile.365-848.com-365bet官网手机版
做最好的网站

什么是多项式??

2019-07-04 16:40 来源:未知

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  其中含字母的各个单项式的数字因数,叫每个项的系数(特别要注意系数的性质符号)。不含字母的项,叫做常数项。多项式的次数以所含单项式中最高的次数为次数

  例如 -3x+4x-5,这是一个多项式,它的系数分别是-3 、4 ;它的常数项是(-5);次数是(最高次数的那项-3x的次数)是2;它的项数是3项,称作二次三项式。

  3、平方根,又叫二次方根,对于非负实数来说,是指某个自乘结果等于的实数,表示为〔√ ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根

  泰勒多项式的精髓便在于以多项式逼近一个平滑函数,此外闭区间上的连续函数都可以写成多项式的均匀极限。

  展开全部多项式区别于单项式,是由几个单项式相加或相减连接而成的式子。如a是单项式,b也是单项式,而a+b就是多项式了,因为它们有加号相连。

  二次多项式就是一个多项式中,其中包含着最高次项是2次的单项式,这个单项式则是二次多项式,如a×a(a的二次方)+b+c就是二次多项式,其中单项式a是最高的2次项,所以如此。

  平方根多项式我没听说过,大概是指多项式间有含平方根的单项式,或是多项式整体被平方根括起来了。

  展开全部由若干个单项式的和组成的代数式叫做多项式(减法中有:减一个数等于加上它的相反数)。多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。

  在数学中,多项式(polynomial)是指由变量、系数以及它们之间的加、减、乘、幂运算(正整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

  展开全部在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。如:2n+2b+4c就是一个多项式。

  多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。

  在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。

  一元二次多项式(quadratic polynomial withone variable)最常见的一种多项式.只含一个变数字母且各项最高次数为2的多项式称为一元二次多项式,它的标准形式为ax^2+bx+c(a≠0),式中a ,b,c为常数。

  应用高斯引理可证,如果一个整系数多项式可以分解为两个次数较低的有理系数多项式的乘积,那么它一定可以分解为两个整系数多项式的乘积。这个结论可用来判断有理系数多项式的不可约性。关于Q[x]中多项式的不可约性的判断。

  还有艾森斯坦判别法:对于整系数多项式,如果有一个素数p能整除αn-1,αn-2,…,α1,α0,但不能整除αn,且p2不能整除常数项α0,那么(x)在Q上是不可约的。由此可知,对于任一自然数n,在有理数域上xn-2是不可约的。因而,对任一自然数n,都有n次不可约的有理系数多项式。

  F[x]中任一个次数不小于 1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。

  当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。

  当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс0。

  当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。关于本原多项式有下述重要性质。

  展开全部在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。

TAG标签: 常数多项式
版权声明:转载须经版权人书面授权并注明来源